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Abstract 
Genetic programming is a technique that produces as output the source code of another 

computer program.  The program is evolved with rules of natural selection that seek to find the 
best solution to a particular problem.  This report presents the results of tests run on eight 
different GP method parameters and shows how variations in the value of these parameters affects 
the time taken to converge on the correct solution.  The problem used to test the method is the 
MAX problem which proved to be a simple, straight forward, and easy approach for evaluating 
GP efficiency.  Testing the method on the MAX problem can help to develop an optimum search 
for problems with unknown solutions.  This paper presents the results of this study.   
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An Evaluation of the Convergence Properties of a Parallel Genetic 
Programming Method 

Introduction 
Genetic programming (GP) described in Koza (1992) is an approach to automatic 

programming in which computers are used to write programs.  GP uses an evolutionary search 
technique to find a highly fit computer program in the space of possible computer programs for 
solving a particular problem.  It is a useful approach because it may find novel solutions that 
might be overlooked in human designed solutions.  This is because computers opportunistically 
attempt to solve the problem without the constraint of human preconceptions about an 
appropriate solution path.  The technique has been used by Pryor (1998) to develop behavior for 
tracking robots, by Barton (2002) to develop multiple pricing strategies for an agent based 
economic model, and by Pryor and Barton (2002) to find manuevering behaviors for an unmanned 
aerial vehicle glider (UAV). 

An important aspect of designing a successful GP method is in developing optimum settings 
for the GP search parameters.  This is a difficult problem when the solution space is unknown.  
Therefore, we conducted tests of a GP method on the MAX problem and measured the time to 
converge on the correct solution as the GP parameters changed.  Testing the method on the MAX 
problem can help to develop an optimum search for problems with unknown solutions.  It is 
simple, straight forward, and easy to conduct.  This paper presents the results of this study.   

Genetic Programming 

GP is a technique that produces as output the source code of another computer program.  GP 
uses the ideas of biological evolution to solve a complex problem by employing the principles of 
natural selection, where the most effective programs survive and compete or cross-breed with 
other programs, to continually approach the best solution to a particular problem.   

GP starts with an initial population of randomly generated computer programs composed of 
functions and terminals appropriate to the problem domain.  The size of the population varies 
based on the problem but thousands of individuals or programs are typical.  Each program that is 
generated is evaluated for its ability to solve the prescribed task and is assigned a numerical score 
or fitness for how well it has achieved this goal.  Some programs will be very effective at 
accomplishing the prescribed task and some will not.  The higher the fitness, the better the 
individual.  A new population is created by performing genetic operations including reproduction, 
crossover and mutation on the individual programs that make up the starting population.  The old 
population is then discarded and the process is repeated using the new population.  One iteration 
of this loop is referred to as a generation. 
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The following sections describe in detail the tree representation, the genetic operators, and the 
solution procedures for the GP method that was used in this study.  The input variables that were 
tested and the input parameters that were used as part of this study are also described in the 
appropriate sections.  

Program Representation 

Programs can be graphically depicted as a rooted point labeled tree with ordered branches.  
Program “(a * b) – c + (d * e)” would be represented as the tree shown in Figure 1.  The basic 
building block of a tree is called a node, with all nodes in the tree having the same fixed structure.  
A node can either be a function or a terminal.  A function node performs a mathematical or 
Boolean operation and generally has branches that point to other nodes. The number of branches 
depends on the kind of function, e.g., add, subtract, multiply. A terminal node normally returns a 
value, does not have any branches, and terminates that section of the tree.  The root node is 
counted as level 0.  The tree shown in Figure 1 is three levels deep, nine nodes, four function 
nodes, and five terminal nodes.   

Figure 1 – Parse Tree Representation 
 

Two parameters are used to control the size of a tree, with size determined by the number of 
levels.  The parameter MINTREESIZE specifies the minimum number of levels in a tree, while 
the parameter MAXTREESIZE specifies the maximum number of levels in a tree.  These 
parameters are used in the following way.  If the level number is less than MINTREESIZE, the 
recursive function that builds the tree will only select from the function node kinds, e.g., add, 
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subtract.  This constraint ensures that at least one more level will be added.  If the level number is 
equal to MAXTREESIZE, the recursive function will only select from the terminal node kinds.  
This constraint ensures that no more levels are added to this part of the tree because terminal 
nodes do not have any branches.  For all other level values, a random selection is made. 

Genetic Operators 

Principles of natural selection are used to create a new generation of individual computer 
programs from the current population of programs.  Three genetic operations are used to create 
the new generation: reproduction, crossover, and mutation.  Each operator works independently 
of the other operators and the usage of each operator is determined by its assigned probability.  
The reproduction, crossover, and mutation operators use a selection operation to determine which 
individuals in the current population will be acted upon. 

The population size POPSIZE of each generation remains the same.  To create the next 
generation, a loop over all individual programs in the populations is started.  Within this loop, a 
random number between 0 and 1 is drawn to determine how to replace that individual in the new 
population.  This random number is compared to three probabilities.  The probability, PROBMU, 
determines the percentage of times that the mutation operation is used and the probability, 
PROBCR, determines the percentage of times that the crossover operation is used.  The 
difference between PROBMU and/or PROBCR and 1.0 is the probability that the reproduction 
operation is used.   

More specifically in our GP method, if the random number chosen at the start of the loop is 
less than parameter PROBMU, then the individual program is altered by the mutation operation.  
If the random number is greater than PROBMU but less than PROBCR then the individual 
program is altered by the crossover operation.  If the random number is greater than PROBCR, 
then the individual is replaced through the reproduction operation.  When the required number of 
new individuals is created, the loop is terminated.  Figure 2 is a depiction of the flow of the 
operation selection procedure.  PROBMU and PROBCR are two of the parameters evaluated in 
this study. 
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Figure 2 – Flow of genetic operation selection procedure 

Selection Operator 
The selection operator is used to identify individuals in the current population for 

reproduction, crossover, or mutation operations.  A tournament algorithm is used, which is easy 
to implement and is relatively fast.  The algorithm works in the following way.  A SELECTNUM 
number of individuals are randomly selected from the population.  The fitness values of these 
individuals are compared, and the individual with the highest fitness is the winner of the 
tournament; that is, the one selected.  If two individuals are needed, as in the case of crossover, 
the tournament is repeated.   

 
SELECTNUM is one of the parameters evaluated in this study.  Note that the parameter 

SELECTNUM affects the distribution of individuals selected, thus increasing the value of 
SELECTNUM moves this distribution toward more elite individuals in the population.  For 
example, if the value of SELECTNUM is equal to the population size, only the most fit individual 
will be selected.  Reducing the value of SELECTNUM improves diversity by allowing more 
individuals to take part in forming the next generation. 

Reproduction Operator 
The reproduction operator uses the selection operator to select a new individual.  Thus the 

operation involves selecting a SELECTNUM number of individuals.  The fitness of these 
individuals is compared and the computer program with the highest fitness is selected for 
reproduction.  This individual program is copied exactly from the current population into the new 
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population.  The reproduction operation does not create anything new in the population of 
computer programs. 

Crossover Operator 
The crossover operation creates a new computer program by selecting two parent programs 

using the selection operator.  Next, for each selected individual, a cutpoint is randomly selected 
among the nodes of its tree.  Finally, the new tree is created by removing the cutpoint node and all 
nodes below it from the first tree and replacing them with the cutpoint node and all nodes below it 
from the second tree.  Figure 3 illustrates this last step.  The new tree, which was created by 
splicing together two trees in the current population, is then placed in the next generation.  Unlike 
reproduction, the crossover operation creates new individuals in the population.  By recombining 
randomly chosen parts of somewhat effective programs, new programs may evolve that are even 
fitter in solving the problem.    

 

Figure 3.  Illustration of the crossover operator – cutpoints for each of the parent 
trees are shown by the arrows. 

Mutation Operator 
The mutation operation allows new individuals to be created by randomly changing the values 

of functions and/or terminals in a selected individual parse tree.  Two different mutation styles are 
tested in this study.  In the first type of mutation operation, limb replacement, mutation occurs by 
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depth not greater than the maximum allowed tree depth, i.e. MAXTREESIZE.  This is graphically 
depicted in Figure 4.  In the second type of mutation operation, node swapping, each point in the 
tree may be altered by a specified probability.  The probability that the swap will occur is 
determined by the probability, PROBNS.  Therefore, not all nodes will necessarily be swapped.  
The node swapping operation is depicted in Figure 5.  Terminals are swapped with alternate 
terminals from the terminal set and functions are swapped with functions with the same number of 
arguments from the function set.  PROBNS is one of the parameters evaluated in this study.   

 

Figure 4 – Illustration of the limb replacement mutation operation – cutpoint is 
shown by the arrow. 
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Figure 5 – Illustration of the node swapping mutation operation. 

 
The probability, PROBLB, determines the percentage of times that the limb replacement 

mutation operation is used versus the percentage of times that the node swapping operation is 
used.  The process is illustrated in Figure 6.  First a tree is selected from the current population 
using the selection operator.  Next, a random number is chosen between 0 and 1.0.  If this random 
number is less than PROBLB, then limb mutation is performed on the selected tree; if it is greater, 
then node swapping mutation is performed.  If the node swapping mutation operation is selected, 
then each node is swapped with the probability PROBND.  PROBLB and PROBND are two of 
the parameters evaluated in this study. 
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 Figure 6 – Flow of mutation operation selection procedure.  

Solution Procedure 

Figure 7 illustrates the basic solution procedure.  The production of the initial generation of 
programs is done by randomly generating a rooted, point labeled parse tree from a set of functions 
and terminals.  The fitness of each individual in the population is then determined, followed by the 
initiation of a loop over generations.  Within the generation loop, the next generation is created 
and the fitness of each individual within that generation is calculated.  A test is then made to 
determine whether any individual meets the convergence criterion.  If an individual is found, the 
loop terminates and the calculation ends.  If no individual is found, the calculation continues.  
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Figure 7.  Solution procedure used. 
 

The calculations were done on the CPLANT massively parallel computer at Sandia National 
Laboratories.  Running on the parallel computer requires some slight modifications in the basic 
solution procedure to allow sharing of the “global-best” tree among processors.  A processor is 
identified by its number, whose range is 0 to the number of processors allocated minus 1.  In our 
implementation, process 0 is the master process which checks for convergence, collects the best 
trees from the other processors, determines which is the global-best tree, and handles sending this 
tree to the calculation processors.  Each of the remaining processors run the same genetic 
program and run independently of the other processors.   

At the end of each generation, each processor determines the best tree in its population and 
sends it to processor 0 where the globally best tree is determined.  This send occur only if the 
local best tree has a larger fitness than the global-best it had received earlier.  Processor 0 then 
determines if a new global-best tree is found and then broadcasts the new global-best tree to all 
processors.  Accordingly, each processor decides whether the global-best tree will be employed in 
creating the next generation, using a rule that depends on the generation number.  If a processor 
decides to use the global-best tree, the processor inserts that tree into the current generation to 
replace the tree that had the smallest fitness.  In this way, the global-best tree is included in all of 
the genetic operations that produce the next generation. 

The reason for not using the global-best tree all the time is to maintain diversity in the entire 
population. The convergence rate is proportional to a measure of the diversity. If all processors 
used the global-best tree in each generation, it would not be long before all of the trees would 
look much the same, and the rate of improvement would be reduced. 

Figure 8 illustrates how the global-best tree is shared between the master processor and the 
calculation processors.  The master processor receives the best trees from all of the calculation 
processors and then determines the current global-best tree.  If the last time that a global-best tree 
was sent to all of the calculation processors is greater than the value of the parameter 
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SENDTIME, then the tree is sent.  The tree will be sent to all of the calculation processors with 
PROBSND probability.  Thus not all of the calculation processors will necessarily receive the 
global-best tree.  The calculation processors will accept the global-best tree into its population of 
trees only if the current iteration is greater than the value USEGLOBALITER.  These three 
parallel process variables were tested in this study.   

 
Figure 8 – Representation of Parallel Process Procedure. 

The MAX Problem 

Gathercole and Ross (1996) introduced the MAX problem to evaluate the standard GP 
crossover operator.  The MAX problem uses a given function set and terminal set; and for a 
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problem for evaluating setup parameters for a GP method.  The MAX problem has a known 
optimal value but can be a difficult problem for GP to solve.  The results are known quickly and 
the solution space is easy to visualize.  The problem can be varied with different function or 
terminal sets and changing the maximum tree depth allowed.   

In this paper we used the function set {*,+} and one terminal of value 0.5.  The root node 
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nodes to assemble subtrees with the value of 2.0.  These must then be connected with either a + 
or * to give a higher level subtree value of 4.0.  All nodes higher than this basic set must be *.  
The optimal base subtrees for this problem are shown in Figure 9.   

 

Figure 9 – Illustration of the base tree structure required to find the optimal value 
for MAX {+,*},{0.5}, Depth > 4. 

 
A generic optimal tree of depth 4, is depicted in Figure 10.  For a given depth D, the 

maximum possible tree value is 42D-3
, where D >= 3.  Thus the optimum value for the tree in 

Figure 10 where D is 4 (the root node counts as depth 0) is 16. 
 

Figure 10 – An optimal tree for MAX depth 4, {+,*}, {0.5} 
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Parameter Evaluation Study 

The parameters and the range of values that were evaluated are listed in Table 1.  All 
parameters are described in the previous sections.  The GP calculation parameters that were used 
in the study are listed in Table 2.  The calculation parameters include variables like population 
size, maximum tree depth, and initial tree depth settings.  The calcuation parameters were the 
same for all runs.   

 
 

Table 1 – GP Test Parameters and Values 
 

Parameter Description Range of Values 
SELECTNUM Number of individuals taking part in tournament selection 4 - 40 
PROBCR Crossover probability .1 - 1.0 
PROBMU Mutation probability .1 - 1.0 
PROBLB Limb mutation probability .1 - 1.0 
PROBND Change node probability .1 - 1.0 
USEGLOBALITER First iteration that the global best tree is accepted 0 - 450 
PROBSND Probability that the global best tree is sent to a process .1 - 1.0 
SENDTIME Minimum time in between best tree send 0 - 135 

 
Table 2 – Calculation Parameters 

 
Parameter Description Value 
MAXNODES Maximum number of nodes 512 
MAXTREEDEPTH Maximum depth of final solution (root node = 0) 8 

MAXINITDEPTH 
Maximum depth of initial population of trees (root 
node = 0) 5 

MININITDEPTH 
Minimum depth of initial population of trees (root node 
= 0) 3 

ANSWER Solution to the MAX problem 18446744073709552000 
POPSIZE Population size 100 
PROCESS Number of nodes used on CPLANT 9 
 
 
The computations were performed on Sandia’s massively parallel CPLANT computer.  The 

MAX problem was solved 500 times for each paramter value that was tested.  Each new run was 
started with a new random number seed.  The value used for all the variable parameter input 
values is shown in Table 3.  These values were used for all of the problems except for the runs 
that tested PROBCR.  For PROBCR the PROBMU value was set to 0, so the mutation operator 
was not used and the impact of crossover versus reproduction could be evaluated. 
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Table 3 – Standard Values for GP Method Variables Used in the Tests 
 

Parameter Standard Value  
SELECTNUM 4 
PROBCR 0.9 
PROBMU 0.5 or * 0.1 for PROBCR 
PROBLB 0.5 
PROBND 0.2 
USEGLOBALITER 50 
PROBSND 0.5 
SENDTIM 30 

 
 

The problem was considered to be solved when the correct answer, ANSWER, for the MAX 
problem was discovered by one of the calculation processors and sent to the master processor.  
The problem was ended at this time and the solution time was recorded.  The average solution 
time and standard deviation for the 500 runs are plotted for each input value in Figures 11 – 19.   

Results 

The following graphs display the average solution time and the standard deviation of the value for 
the 500 test runs.  The first five graphs are parameters that control the genetic operations and the 
last three graphs are parameters that control the sharing of solutions across processors. 

Genetic Operators 
The results for the number of trees, SELECTNUM, used in the tournament selection process 

(Figure 11), show that the convergence time is little affected by the percentage of trees used in the 
tournament after about 10% of the population. The population size used in this test was 100.  The 
selection procedure plays an important part in all of the genetic operations in this GP method. 

The results of varying the probability of the mutation and crossover operations shows the 
interrelationship between the use of these two operations with the reproduction operation.  Our 
results show that convergence time increases as the probability of mutation increases (Figure 12).  
When mutation becomes the primary genetic operation, i.e. when PROBMU is greater than .9, a 
solution for the MAX problem of depth 8 could not be found even after hours of searching.  
However, we also found that crossover without any mutation, i.e. when PROBMU = 0, can not 
solve the MAX problem of depth 8.  Gathercole and Ross 1996 report similar results and the 
failure of the crossover operation alone in finding a solution for the MAX problem with depths 
greater than 6.   

To test the relative role of reproduction and crossover, the mutation operator, PROBMU was 
set to a minimum value of 0.1, and PROBCR was varied from .2 – 1.0.  The results of these tests 
are displayed in Figure 13.  When PROBCR is low, the reproduction operator becomes the 
principal genetic operator in building the next generation.  Reproduction does not create new 
trees but improves the fitness of the population through selection.  Our results indicate that 
convergence time is slowed when reproduction is the predominant genetic operator.  However, 
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when some reproduction is part of the genetic operations mix i.e., when PROBMU is .1 and 
PROBCR is .8 - .9, convergence improves by about 3% as compared to when no reproduction is 
used, i.e., when PROBMU is .1 and PROBCR is 1.0.  

The results for the two different styles of mutation, limb or node, are shown in Figures 14 and 
15.  The results indicate that the style of mutation used has little effect on convergence time as 
long as limb mutation is not used exclusively (i.e. when PROBLB = 1.0).  In addition, node 
mutation operation is best deployed on only a small number of the tree nodes (i.e. when 
PROBND is about .1). 

Global-Best Tree Sharing 
The parameters that control the sharing of the global-best tree across processors show little 

impact on convergence time (Figures 15 – 18).  When the global best is shared at the earliest 
possible iteration (USEGLOBITER = 0), the convergence time is only slightly faster than sharing 
after 450 generations.  When the probability that the calculation processors receive the global-best 
tree is low (PROBSND = .1) convergence time is only slightly improved over the possibility that 
all of the processors receive the global-best tree all of the time (PROBSND = 1).  Convergence 
time is actually improved for smaller delays (SENDTIME < 15) for this problem, meaning that an 
earlier sharing of the global-best tree improves the efficiency of finding the correct solution.  
Gathercole and Ross, 1996, suggest that GP finds the MAX problem difficult because it quickly 
finds suboptimal solutions which contain + nodes near the root of the tree.  Although sharing the 
global-best tree early in the problem reduces the diversity of the population, it helps to keep the 
calculation processors from concentrating on these suboptimal trees.  This may not always be the 
best solution for other problems without many suboptimal solutions.   

 
Figure 11 – Solution time for variation of the number of trees (SELECTNUM) 

chosen in the tournament selection process. 
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Figure 12- Solution Time for variation of mutation probability (PROBMU). 

 
 
 

 

 
Figure 13– Solution Time for variation of crossover probability (PROBCR). 
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Figure 14 - Solution Time for variation of limb mutation probability (PROBLB). 

 

Figure 15 - Solution Time for variation of node mutation probability (PROBND). 
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Figure 16 - Solution Time for variation of iteration that the global best tree is 

accepted by the process nodes (USEGLOBITER). 
 

 
 

Figure 17 - Solution Time for variation of the probability that the global best tree 
is sent to the process nodes (PROBSND). 
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Figure 18 - Solution Time for variation of the wait time before the global best tree 
is sent to the process nodes (SENDTIME). 

Conclusions 

We have shown that the MAX problem is a useful and simple method to find the best settings 
for GP method parameters.  The results of this study showed that steps taken to limit sharing of 
the global best tree had little effect on the results of the study.  However, convergence time was 
strongly affected by the choice of genetic operation and the manner in which the genetic 
operations intermixed.  Utilizing the MAX problem to tune the GP method parameters is a useful 
exercise and one that can help improve the efficiency of problem solving with GP. 
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